Stability and Convergence Analysis of Fully Discrete Fourier Collocation Spectral Method for 3-D Viscous Burgers' Equation

نویسندگان

  • Sigal Gottlieb
  • Cheng Wang
چکیده

This paper analyzes the stability and convergence of the Fourier pseudospectral method coupled with a variety of specially designed time-stepping methods of up to fourth order, for the numerical solution of a three dimensional viscous Burgers’ equation. There are three main features to this work. The first is a lemma which provides for an L2 and H 1 bound on a nonlinear term of polynomial type, despite the presence of aliasing error. The second feature of this work is the development of stable time-stepping methods of up to fourth order for use with pseudospectral approximations of the three dimensional viscous Burgers’ equation. Finally, the main result in this work is that the pseudospectral method coupled with the carefully designed time-discretizations is stable provided only that the time-step and spatial grid-size are bounded by two constants over a finite time. It is notable that this stability condition does not impose a restriction on the time-step that is dependent on the spatial grid size, a fact that is especially useful for three dimensional simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fourier Pseudospectral Method for Solving Coupled Viscous Burgers Equations

The Fourier pseudo-spectral method has been studied for a onedimensional coupled system of viscous Burgers equations. Two test problems with known exact solutions have been selected for this study. In this paper, the rate of convergence in time and error analysis of the solution of the first problem has been studied, while the numerical results of the second problem obtained by the present meth...

متن کامل

Long Time Stability of a Classical Efficient Scheme for Two-dimensional Navier-Stokes Equations

We prove that a popular classical implicit-explicit scheme for the 2D incompressible Navier–Stokes equations that treats the viscous term implicitly while the nonlinear advection term explicitly is long time stable provided that the time step is sufficiently small in the case with periodic boundary conditions. The long time stability in the L2 and H1 norms further leads to the convergence of th...

متن کامل

Spectral collocation method for stochastic Burgers equation driven by additive noise

Almost nothing decisive has been said about collocation methods for solving SPDEs. Among the best of such SPDEs the Burgers equation shows a prototypical model for describing the interaction between the reaction mechanism, convection effect, and diffusion transport. This paper discusses spectral collocation method to reduce stochastic Burgers equation to a system of stochastic ordinary differen...

متن کامل

Solving a nonlinear inverse system of Burgers equations

By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...

متن کامل

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2012